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Why Measure CM B Polarization?

o The Signal Chain:
In 1965, measurements of the temperature of the Cosmic Microwave Background J

(CMB) helped verify the Big Bang Model of Cosmology. Recently, accurate measurements of
CMB anisotropy have shown that we live in ageometrically flat universe, and have provided Outer Ground Screens
more evidence for inflation. Thereis, however, athird property of the CMB that can yield even
more cosmological secrets: its polarization.

1. Signal enters feedhorn from above

2. Signal split into “x” and “y” polarizations with wide-band Orthomode Transducer.

3. Signals pass through isolators, then HEMT amplifiers ( ~ 25 dB gain), then out of the dewar to
warm radiometer.

The CMB is theorized to be polarized an amount less than or equal to 10% of its 4. Signals amplified with warm RF amplifiers.

anisotropy level. Thislevel depends sensitively on both the reionization history of the universe, o : o
and on angular scale, aswell as al the cosmological parameters. |n general, we need several '_-_ e -' i T B g, e — . . phase modulated at ~ 1000 Hz to allow lock-in.
numbers to characterize CMB polarization, not just one. In terms of power spectra, there are E- 3 B : S £ '
mode, B-mode, and TE cross-correlation power spectra. E-mode power spectraresult from

density perturbations in the early universe, while B-mode power spectra are generally caused by
gravitational waves. In addition, “E” is expected to be correlated with temperature anisotropy at
alevel of 10-30%, yielding the“TE” mode. E and B are related to the linear Stokes' parameters

QandUby E(B) =Q(n) +(-)1U(N).

The POLAR (Polarization Observations of Large Angular Regions) experiment
measures CMB polarization at large scales, and will primarily be able to constrain the epoch of

5. Signals downconverted to IF frequencies (2-12 GHz) with 38 GHz Local Oscillator; one arm is

6. Signals amplified again
7. Signals each split with power divider; Total Power signals detected.

8. The remaining signals are amplified again to ~ +10 dBm of power, then multiplexed to our three
sub-bands.
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9. Each sub-band signal is run through a phase corrector, then the x- and y-polarizations are
multiplied in a double-balanced mixers. All signals are then pre-amplified, low-pass filtered at 5 Hz,
and run through a lockin-amplifier. The signals are sent through a 16-channel DAQPad ™, and
recorded to a portable laptop computer.

Cryocooler (hidden) {7 [ &

reionization of the universe. POLAR measures both Q and U, and thus will place independent

constaints on large-scale E and B power spectra. In addition, POLAR will be sensitive to
galactic synchrotron radiation, whose polarization properties have not been measured at j\%
HORM
frequencies above 1.4 GHz. -
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Theoretical Power Spectra of CMB Polarization, E and TE cross- observing site is located in Pine Bluff, WI at a latitude of 43°. POLAR performs a ssimple zenith drift
correlation. Temperature anisotropy is shown to give the viewer some scan and maps out aring about the NCP, and obtains ~ 36 pixels.

perspective. E-pol isshown both with and without reionization. Notethe

“reionization peak” at low multipolesfor thecaseof t =0.1. Error bars
are those expected for the MAP satellite. (figure courtesy Wayne Hu)
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for atotal power radiometer. Thisis because one replaced the wire grid with athin (3 mil) polypropylene
must determine the Volts/Polarized Kelvinsof the film. It can be snown that this yields a polarization ;;E
instrument. Ideally, this would be done under signal of
conditions as similar as possible to the actual Tpol = (Thot - Teold)(R7E - R1m) SiN(2j )
observing conditions; that is, inject asignal similar o , , _ ™
: : : where | isthe rotation angle of the grid about the z-axis. 7), TE t
to the atmosphere in power but dlightly polarized. _ , _
: : : For a 3-mil polypropylene sheet, theorical calculations »j
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below shows a sample calibration, which evidences a
high S/N for all 3 correlation channels.
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The figure above shows POLAR' s scan strategy overlaid on a galactic map of synchrotron radiation T 1
at 408 MHz. Thering at declination 43°resulting from the zenith drift scan yields ~ 36 7° pixels. —0.20 :
We pass through the galactic plane twice. Extrapolation of the low-frequency synchrotron mapsto . . O30E
our frequency band of 26-36 GHz suggests that galactic synchrotron will dominate our signal. The T T e ® =00 mnnsumglia#n 2000 2500
total power signal can reach as high as 4-5 mK in the plane, and is perhaps 50 nK at high galactic Frequancy (GH?) ;
latitudes. Synchrotron radiation can be up to 75% polarized, but typical values are truly unknown at (@ (b)
these frequencies. A measurement of polarized galactric synchrotron by POLAR would contribute
greatly to our understanding of galactic synchrotron, and the level at which it will affect future
CMB polarization missions.
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